ไดโอด (Diode)

    สวัสดีครับเพื่อนๆ  สำหรับในวันนี้ผมได้นำความรู้ของอุปกรณ์อิเล็คทรอนิคส์ชิ้นเล็กๆที่มีความสำคัญอีกชิ้นหนึ่ง  ที่มีบทบาทในการทำงานต่อวงจรอิเล็คทรอนิคส์อย่างมากเช่นกัน  และเป็นต้นฉบับในการนำมาสร้างเป็นสร้างกึ่งตัวนำประเภทต่างๆ เช่นทรานซิสเตอร์ แบบต่างๆ เป็นต้น
  • ไดโอด(Diode) ถือเป็นอิเล็กทรอนิกส์ชนิดหนึ่ง ที่จำกัดทิศทางการไหลของประจุไฟฟ้า มันจะยอมให้กระแสไฟฟ้าไหลในทิศทางเดียว และกั้นการไหลในทิศทางตรงกันข้าม ดังนั้นจึงอาจถือว่าไดโอดเป็นวาล์วตรวจสอบแบบอิเล็กทรอนิกส์อย่างหนึ่ง ซึ่งนับเป็นประโยชน์อย่างมากในวงจรอิเล็กทรอนิกส์ เช่น ใช้เป็นเรียงกระแสไฟฟ้าในวงจรภาคจ่ายไฟ เป็นต้น
  • ไดโอดตัวแรกเป็นอุปกรณ์หลอดสูญญากาศ (vacuum tube หรือ valves) แต่ทุกวันนี้ไดโอดที่ใช้ทั่วไปส่วนใหญ่ผลิตจากสารกึ่งตัวนำ เช่น ซิลิกอน หรือ เจอร์เมเนียม
  • ไดโอดเป็นอุปกรณ์ที่ทำจากสารกึ่งตัวนำ p-n สามารถควบคุมให้กระแสไฟฟ้าจากภายนอกไหลผ่านตัวมันได้ทิศทางเดียว ไดโอดประกอบด้วยขั้ว 2 ขั้ว คือ แอโนด (Anode; A) ซึ่งต่ออยู่กับสารกึ่งตัวนำชนิด p และ แคโธด (Cathode; K) ซึ่งต่ออยู่กับสารกึ่งตัวนำชนิด n
  • ประเภทของไดโอด

  • ซีเนอร์ไดโอด (Zener Diode)

  • ซี เนอร์ไดโอดเป็นอุปกรณ์สารกึ่งตัวนำที่นำกระแสได้เมื่อได้รับไบอัสกลับ และระดับแรงดันไบอัสกลับที่นำซีเนอร์ไดโอดไปใช้งานได้เรียกว่า ระดับแรงดันพังทลายซีเนอร์ (Zener Breakdown Voltage ; Vz) ซีเนอร์ไดโอดจะมีแรงดันไบอัสกลับ (Vr)น้อยกว่า Vz เล็กน้อย ไดโอดประเภทนี้เหมาะที่จะนำไปใช้ควบคุมแรงดันที่โหลดหรือวงจรที่ต้องการแรง ดันคงที่ เช่น ประกอบอยู่ในแหล่งจ่ายไฟเลี้ยง หรือโวลเทจเรกูเลเตอร์

  • ไดโอดวาแรกเตอร์หรือวาริแคป (Varactor or Varicap Diode)

  • ได โอดวาแรกเตอร์หรือวาริแคปเป็นไดโอดที่มีลักษณะพิเศษ คือ สามารถปรับค่าคาปาซิแตนซ์เชื่อมต่อ (Ct) ได้โดยการปรับค่าแรงดันไบอัสกลับ ไดโอดประเภทนี้มีโครงสร้างเหมือนกับไดโอดทั่วไป ขณะแรงดันไบอัสกลับ (Reverse Bias Voltage ; Vr) มีค่าต่ำ Depletion Region จะแคบลงทำให้ Ct ครงรอบต่อมีค่าสูง แต่ในทางตรงข้ามถ้าเราปรับ Vr ให้สูงขึ้น Depletion Region จะขยายกว้างขึ้น ทำให้ Ct มีค่าต่ำ จากลักษณะดังกล่าว เราจึงนำวาริแคปไปใช้ในวงจรปรับความถี่ เช่น วงจรจูนความถี่อัตโนมัติ (Automatic Fine Tunning ; AFC) และวงจรกรองความถี่ซึ่งปรับช่วงความถี่ได้ตามต้องการ (Variable Bandpass Filter) เป็นต้น
  • แอลอีดี (Light Emitting Diode ; LED)

  • LED เป็นไดโอดที่ใช้สารประเภทแกลเลี่ยมอาร์เซ็นไนต์ฟอสไฟต์ (Gallium Arsenide Phosphide ; GaAsP) หรือสารแกลเลี่ยมฟอสไฟต์ (Gallium Phosphide ; GaP) มาทำเป็นสารกึ่งตัวนำชนิด p และ n แทนสาร Si และ Ge สารเหล่านี้มีคุณลักษณะพิเศษ คือ สามารถเรืองแสงได้เมื่อได้รับไบอัสตรง การเกิดแสงที่ตัว LED นี้เราเรียกว่า อิเล็กโทรลูมินิเซนต์ (Electroluminescence) ปัจจุบันนิยมใช้ LED แสดงผลในเครื่องมืออิเล็กทรอนิกส์ เช่น เครื่องคิดเลข,นาฬิกา เป็นต้น
  • โฟโตไดโอด (Photo Diode)

  • โฟ โตไดโอด เป็นไดโอดที่อาศัยแสงจากภายนอกผ่านเลนซ์ ซึ่งฝังตัวอยู่ระหว่างรอยต่อ p-n เพื่อกระตุ้นให้ไดโอดทำงาน การต่อโฟโตไดโอดเพื่อใช้งานจะเป็นแบบไบอัสกลับ ทั้งนี้เพราะไม่ต้องการให้โฟโตไดโอดทำงานในทันทีทันใด แต่ต้องการให้ไดโอดทำงานเฉพาะเมื่อมีปริมาณแสงสว่างมากพอตามที่กำหนดเสีย ก่อน กล่าวคือ เมื่อเลนซ์ของโฟโตไดโอดได้รับแสงสว่างจะเกิดกระแสรั่วไหล ปริมาณกระแสรั่วไหลนี้เพิ่มขึ้นตามความเข้มของแสง
  • ไดโอดกำลัง (Power Diode)

  • ได โอดกำลัง เป็นไดโอดที่ออกแบบให้บริเวณรอยต่อมีช่วงกว้างมากกว่าไดโอดทั่วไป เพื่อนำไปใช้กับงานที่มีกำลังไฟฟ้าสูง กระแสสูงและทนต่ออุณหภูมิสุงได้ เช่น ประกอบเป็นวงจรเรียงกระแส ในอิเล็กทรอนิกส์กำลัง เป็นต้น จะเห็นได้ว่าเมื่อพิกัดกระแสไฟฟ้ามีค่าหลายร้อยแอมป์ ทำให้ไดโอดมีอุณหภูมิขณะทำงานสูง โดยทั่วไปจึงนิยมใช้ร่วมกับตัวระบายความรัอน (Heat Sinks)เพื่อเพิ่มพื้นที่ระบายความรัอนภายในตัวไดโอดกำลัง
  • ไดโอดในทางอุดมคติ

  • ได โอดในอุดมคติ (Ideal Diode) มีลักษณะเหมือนสวิตช์ที่สามารถนำกระแสไหลผ่านได้ในทิศทางเดียว ถ้าต่อขั้วแบตเตอรี่ให้เป็นแบบไบอัสตรงไดโอดจะเปรียบเป็นเสมือนกับสวิตช์ที่ ปิด (Close Switch) หรือไดโอดลัดวงจร (Short Circuit) Id ไหลผ่านไดโอดได้ แต่ถ้าต่อขั้วแบตเตอรีแบบไบอัสกลับ ไดโอดจะเปรียบเป็นเสมือนสวิตช์เปิด (Open Switch) หรือเปิดวงจร (Open Circuit) ทำให้ Id เท่ากับศูนย์
  • ไดโอดในทางปฏิบัติ

  • ได โอดในทางปฏิบัติ (Practical Diode) มีการแพร่กระจายของพาหะส่วนน้อยที่บริเวณรอยต่ออยู่จำนวนหนึ่ง ดังนั้น ถ้าต่อไบอัสตรงให้กับไดโอดในทางปฏิบัติก็จะเกิด แรงดันเสมือน (Ge >= 0.3V ; Si >= 0.7V) ซึ่งต้านแรงดันไฟฟ้าที่จ่ายเพื่อการไบอัสตรง ขนาดของแรงดันเสมือนจึงเป็นตัวบอกจุดทำงาน ดังนั้น จึงเรียก “แรงดันเสมือน” อีกอย่างหนึ่งว่า “แรงดันในการเปิด” (Turn-on Voltage ; Vt )
  • กรณี ไบอัสกลับ เราทราบว่า Depletion Region จะขยายกว้างขึ้น แต่ก็ยังมีพาหะข้างน้อยแพร่กระจายที่รอยต่ออยู่จำนวนหนึ่ง แต่ก็ยังมีกระแสรั่วไหลอยู่จำนวนหนึ่ง เรียกว่า กระแสรั่วไหล (Leakage Current) เมื่อเพิ่มแรงดันไฟฟ้าขึ้นเรื่อยๆ กระแสรั่วไหลจะเพิ่มขึ้นจนถึงจุดทีไดโอดนำกระแสเพิ่มขึ้นมาก ระดับกระแสที่จุดนี้ เรียกว่า “กระแสอิ่มตัวย้อนกลับ” (Reverse Saturation Current ; Is ) แรงดันไฟฟ้าที่จุดนี้ เรียกว่า แรงดันพังทลาย (Breakdown Voltage) และถ้าแรงดันไบอัสสูงขึ้นจนถึงจุดสูงสุดที่ไดโอดทนได้ เราเรียกว่า “แรงดันพังทลายซีเนอร์” (Zener Breakdown Voltage ; Vz) ถ้าแรงดันไบอัสกลับสูงกว่า Vz จะเกิดความร้อนอย่างมากที่รอยต่อของไดโอด ส่งผลให้ไดโอดเสียหายหรือพังได้ แรงดันไฟฟ้าที่จุดนี้เราเรียกว่า แรงดันพังทลายอวาแลนซ์ (Avalance Breakdown Voltage) ดังนั้น การนำไดโอดไปใช้งานจึงใช้กับการไบอัสตรงเท่านั้น

Leave a Reply

Your email address will not be published.